

Daily Tutorial Sheet 4	JEE Advanced (Archive)

- For solution refer to Chapter-22 (Oxygen Containing Organic Compounds-I), Illustration-13. 45.
- (C) has to be benzaldehyde as the product is a α - β unsaturated carbonyl compound (Cross-aldol 46. condensation).

$$\begin{array}{c|c} O & OH \\ \hline \begin{array}{c} O \\ \hline \begin{array}{c} 1. \text{ NaOH} \\ \hline \end{array} \\ \hline \begin{array}{c} CH - Ph \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} CH - Ph \\ \hline \end{array} \\ \begin{array}{c} H^{\dagger} \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} CHPh \\ \hline \end{array}$$

47. Aldehyde A does not has any α -H but undergo ozonolysis to give two moles of compound B and benzaldehyde. Compound B on oxidation gives oxalic acid, so A is:

$$\begin{array}{c} {\rm C_6H_5-CH=}\underset{\rm A}{\rm CHO}={\rm C-CHO} \xrightarrow{\rm O_3} {\rm C_6H_5-CHO} + 2{\rm HOOC-CHO} \\ {\rm B} \xrightarrow{\rm Ag^+} {\rm COOH} \\ {\rm COOH} \end{array}$$

- 49.(ACD) For tautomerism, presence of α -hydrogen is essential

$$CH = CH - OH \longrightarrow CH_2 - CHO$$

$$Enol$$

$$CH_2 - CHO$$

$$Keto$$

$$O \longrightarrow OH$$

$$O \longrightarrow OH$$

- **50.(BD)** Cannizzaro's reaction is a disproportionation reaction. No C-C bond is formed. Similarly no C-C bond will be formed during Clemmensen's reduction.
- **51.(ABD)** For aldol condensation to take place presence of α -H is essential.

$$2 \operatorname{CH}_{3} - \operatorname{C-H} \xrightarrow{\operatorname{Aldol}} \operatorname{CH}_{3} - \operatorname{CH} = \operatorname{CH} - \operatorname{C-H}$$

$$2 \operatorname{CH}_{3} - \operatorname{CH}_{2} - \operatorname{C} \operatorname{H} \xrightarrow{\operatorname{Aldol}} \operatorname{CH}_{3} \operatorname{CH}_{2} \operatorname{CH} = \operatorname{C} - \operatorname{C-H}$$

$$2 \operatorname{CH}_{3} - \operatorname{CH}_{2} - \operatorname{C} \operatorname{H} \xrightarrow{\operatorname{CHodensation}} \operatorname{CH}_{3} \operatorname{CH}_{2} \operatorname{CH} = \operatorname{C} - \operatorname{C-H}$$

$$\operatorname{CHO} \xrightarrow{\operatorname{CHO}} \operatorname{No} \alpha \operatorname{-H}$$

$$2 \operatorname{CD}_{3} - \operatorname{C-H} \xrightarrow{\operatorname{Aldol}} \operatorname{Condensation} \operatorname{CD}_{3} - \operatorname{CD} = \operatorname{C-C-H}$$

$$\operatorname{D}_{3} \operatorname{C-CH} = \operatorname{CD-C-H}$$

52.(AD) Only primary amines will react with acetone to give a product containing C = N.

53.(B)
$$CH_{3} - C = CH_{2} \xrightarrow{D_{2}O} CH_{3} - C - CH_{2} - D \Longrightarrow CH_{3} - C = CH - D \xrightarrow{D_{2}O} CH_{3} - C - CHD_{2}$$

$$CH_{3} - C = CH - D \xrightarrow{D_{2}O} CH_{3} - C - CHD_{2}$$

$$OH$$

$$OH$$

$$OH$$

$$OH$$

$$OH$$

54. (a) G is benzoic acid C_6H_5 –COOH, B and C are two stereoisomeric oximes which undergo Beckmann's rearrangement on treatment with acid to give amides D and E. In Beckmann's rearrangement, the group anti to -OH migrates to nitrogen; then oxygen of OH group moves to carbon atom forming carbonyl group.